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The quest for clean and efficient sources of electric power has
intensified the research on proton-exchange membrane fuel cells
(PEMFC) in the past decade. The high conductivity of hydrated
Nafion membranes, along with their chemical and mechanical
stability, makes them favorites in applications with temperature of
operations up to 80C. At higher temperatures, this membrane
steadily releases water, with a concomitant decrease in proton
conductivity? Higher temperatures of operation are desirable, . ._ i
however, to enhance the rate of the reaction at the Pt electrodes é =
and more critical to avoid the poisoning of Pt by adsorption of Figure 1. QM optimized structure of 2,4,5-trifluoroimidazole on Pt. (A)
CO, present as an impurity in the feeding gases for the fuel cell. Top view of the periodic cell. The lower layer of Pt is hidden. (B) Side
CO poisoning can be avoided if the electrode operatds=atl20 view. ImF3 binds through N to a top position in the Pt surface.

°C.2 Therefore, the development of membranes with good proton 1 3 ycai/mol for ImF3. The PtN bond length illustrates the same
conductivity and that can operate above 220with Pt electrodes trend, increasing from 2.10 A for Im to 2.45 A for ImF3. This
has become a principal goal of fuel cell research. Alternative water- regyit shows that perfluorination of the imidazole ring would prevent
free materials, such as organimorganic composite membraries the poisoning of the Pt electrode by weakening the NPbonds.
and blends of different polymers with phosphoric atliad been Now the question is whether the fluorination of imidazole will
tried for PEMFC in that intermediate temperature range. However, gjow the proton transport in the Nafion matrix. In water, protons
none can satisfy the high proton conductivity and chemical stability 5.¢ transported through two different mechanisms: the diffusion
requirements for fuel cell applications. of protonated water molecules (vehicular diffusion) and the hopping
Imidazole (Im) is a heterocyclic molecule containing two N 4 the proton along sequences of water molecules (Grothuss
atoms, allowing it to pick a proton on one N and deliver the H  gjfysion). Accurate MD methodologies, such as ab initio MD
from the other N site. Its high boiling point (25T°) makes ita  and the classical multistate empirical valence bond m&dehve
good candidate to replace water as proton carrier in intermediate-peen used to compute proton diffusion. To provide a comparison
temperature PEMFE:® The conductivity of recast Nafion mem-  of the total mobility in these two similar systems, we employ a
brane with~10 wt % imidazole at 166180 °C was found to be  gjmple and fast method to estimate both the vehicular mobility and
~0.1 S/cm, as high as that of 100% humidity Nafion at°&0* the nonvehicular mobility respectively by analyzing the trajectory
Notwithstanding the excellent proton conductivity of the recast from classical MD simulations on a realistic model of the Nafion
Nafion—imidazole membrane, it was discarded for fuel cell membrané3 We do this considering both (a) imidazole (Im) and
applications because imidazole poisons the Pt electrode. (b) trifluoroimidazole (ImF3) as the proton carrier, in a proportion
In this Communication, we propose using 2,4,5-trifluoroimida-  of three heterocyclic molecules per sulfonate. Details of the systems
zole (ImF3) as the proton carrier for water-free Nafion membranes gnd simulations can be found in the SI. The temperature {CJ7
operating above 128C. We have carried out quantum mechanics and concentration of imidazole in Nafion (15 wt %) were selected
(QM) and molecular dynamics (MD) simulations indicating (i) that to be close to the experimental values for the recast memBrane.
the ImF3 does not adsorb significantly on Pt and (ii) that the proton e estimate the proton diffusidd in the carrier/Nafion system as
COﬂdUCtiVity of ImF3/Nafion membranes is comparable to that of the sum of two contributions: a vehicular diffusion coeffici®t
Im/Nafion. and a hopping diffusion coefficiefiy. The vehicular contribution
Using DFT QM methods (GGA PW91), we find that the strong  was computed from the slope of the mean-square displacement of
adsorption of Im to the Pt(111) surface is responsible for poisoning the proton carrier (ImH or ImF3H) with time in the equilibrated
of the electrode@e = 21.1 kcal/mol binding energy). However,  MD trajectories,Dy = [H2(t)Z6t.

for ImF3 we find D? =13 kcal/_mol. [Detail_s Qf the calcu!ations To compute the hopping diffusion in the membrane, we first
are in the Supporting Information (Sl).] Similar calculations for parametrized the rate constant for the transfer of a proton from the
CO/Pt(111) lead t®. = 38.5 kcal/mol (expt 42.3- 6.7 kcal/mo?), protonated to the neutral carrier as a function of the intermolecular

and for HO/Pt(111) lead to 11.0 kcal/mol (expt 12.5 kcal/Afpl donor and acceptor NN distance, using transition state theéty,
indicating that this level of calculation is adequate. Figure 1 shows

the lowest energy configuration of ImF3 on the Pt surface; the kg Ei]-(r) — 1/2haw(r)

adsorbate heterocyclic ring is perpendicular to the surface. In this kj(r) = "(Tvr)T 2 e 1)
configuration, the splone pair of the N binds to a surface Pt atom.

The effect of fluorination is to reduce the electronic density in the where the tunneling factaris given in ref 14 andk(r) is the energy

sp? lone pair orbital of the N, decreasing the binding energy to just barrier for the proton to be transferred from donor to acceptor in a
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Figure 2. (@) Barriers for the proton transfer between Im/Imlue) and
ImF3/ ImF3H" (magenta) in a dielectric with= 23 at representative donor/
acceptor N-N distances. The hopping barriers differ by less than 0.9 kcal/
mol. (b). Radial distribution functiog(r) between donor and acceptor N
sites of Im (blue) and ImF3 (magenta) Nafion membranes. The perfluori-
nation decreases the number of close donor/acceptor neighbors.

Table 1. Computed Proton Diffusion Coefficients
T Dy Dy D
(K) (1075 cm?/s) (1075 cm?/s) (1075 cm?/s)
Im/Nafion 450 0.15 0.30 0.45
ImF3/Nafion 450 0.12 0.13 0.25
watepP 300 1.52 1.63 3.15

aSee S| for details? ExperimentaD = 9.3 x 107 cn?/s, from ref 15.

specific conductivity of Im/Nafion iS= 0.1 S/cm at 177C 2 we
expect trifluoroimidazole/Nafion to hav@~ 0.06 S/cm, making

it a good candidate for fuel cell applications. The vehicular
contributions are comparable for the two membranes. The 44%
decrease in the hopping contribution to the transport for ImF3 arises
mainly from the decrease in the probability of close donor/acceptor

distances (see Figure 2b). This decrease arises because replacement

of H by bulkier F atoms decreases the number of pairs at the close
distances where the proton hopping mechanism is more effective.
It has also been arguBdhat the proton transfer in imidazole is
limited by the reorientation of the molecule. We computed the
characteristic reorientational timeg for ImH* and ImF3H in
the Nafion membrane from the decay of the first-order autocorre-
lation function C,(t) for the intramolecular NN vector. We find
that the characteristic rotational time for ImF3 is 20% smaller than
for Im (89 versus 113 ps; see Sl). Thus, if this were the limiting
factor, the decrease in mobility would be just 20%, rather than the
44% we calculated considering proton transfer as the limiting step.
In summary, we have demonstrated using QM and MD simulation
methods that the perfluorination of the proton carrier in imidazole
Nafion membranes would solve the problem of electrode poisoning,
while still providing a high proton conductivity.
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